
Kitsat Extension Interface

Work in progress - information is
lacking and unverified

Version history

Date Author Edits

June 28th 2022 Samuli Nyman Initial document

June 28th 2022 Tessa Nikander Structure, minor additions to Section 4

Arctic Astronautics Oy 2/20

Table of Contents

1. Extended Kitsats 3

2. Mechanical interface 4
2.1 Attachment options 4
2.2 Existing solutions 5
2.3 Compatibility with the CubeSat standard 5

3. Electrical interface 6
3.1 PCB format 6

3.1.1 Power lines 8
3.1.2 Data lines 9

3.2 Cables 9

4. Software interface 9
4.1 Protocol 10
4.2 Example communication 11
4.3 Commanding the satellite from the payload 12

4.3.1 The protocol 13

5. User interface 14
5.1 Kitsat GS GUI 14
5.2 Software solutions 15

Arctic Astronautics Oy 3/20

1. Extended Kitsats
This document describes the necessary mechanical, electrical, software and user interfaces
that can be used to create 3rd party extensions to Kitsat. The document is not an exhaustive
list of ways to connect to the satellite but describes the interfaces designed for extendability.

The Kitsat platform already implements many functionalities required by many simulatory or
educational satellite platforms, such as a wired and wireless datalink, electrical power system,
memory, camera, basic sensors for temperature, pressure, attitude and magnetometer, as well
as a GPS for positioning. The Kitsat platform can be used as-is in many educational programs,
but it is also possible to extend to suit a specific need or to serve as a platform for educational
programs.

Technical materials can be found from the Kitsat extension repository available at:

Arctic Astronautics Oy 4/20

2. Mechanical interface

2.1 Attachment options

The frame of Kitsat consists of 3 main parts - A plastic bottom plate and top frame and the
anodized aluminum rails. These are used to support the electronics stack inside the satellite.

The basic options for attaching the extensions mechanically to the satellite revolve around
these three main components - You could replace the top frame or the bottom plate with your
custom parts and attach the payload to the plate interfaces. This approach is simple and would
work well for a small payload. One option is also to utilize the attachment point in the center of
the top frame, intended for hosting the Kitsat, to attach the payload.

Arctic Astronautics Oy 5/20

Similarly, you could attach a payload to a side of the Kitsat, replacing one or more of the solar
panels.

The most robust option for the modification is to extend the entire satellite, making it from 1U
to 2 or 3U CubeSat. However, this is usually not cost-efficient as it requires ordering custom
machined parts. Depending on the size, the cost of the rails is around 50-100 € per piece when
ordered in small quantities. On the other hand, this allows for customized accurate interfaces
and a robust end-product. Furthermore, engineering students often lack the experience of
working with machine shops, making the process of designing and ordering the parts a
valuable lesson in itself. That being said, 3d-printing the rail pieces could also be an option,
depending on the project requirements.

The solar panels are of course also 1U-sized, but in many instances, it is possible to simply
have multiple of them, or cover the sides with a custom-designed piece. Also, it is possible to
design larger Kitsat-style solar panels as we’ve done with the 3U-Kitsat.

Overall, there are multiple ways to attach your payload to the Kitsat, and creative engineers
can surely come up with other ones. Below is a quick recap of the methods described here.

Attachment
method

Kitsat parts replaced Suitable for Disadvantage

Plate interface -
top

Top plate, antennas Medium size payloads The antennas should be
reattached or
reimplemented

Plate interface -
bottom

Bottom plate Medium size payloads The payload will probably
block the camera

Solar panel area One solar panel Thin payloads Removes solar panel,
moves the center of mass
to the side

Top plate
hoisting ring

None Small payloads Blocks the main way for
hosting Kitsat

Extension Rails Large payloads Cost of manufacturing

Arctic Astronautics Oy 6/20

In the drawing, below, the rail dimensions are presented in the configuration they will be in the
assembled Kitsat.

Additionally, a step-model for the basic frame is available in the Kitsat extension repository.

2.2 Existing solutions
We have built a couple of custom Kitsats using some of the options described in the previous
chapter. Some have used a different design of solar panels, and one had a 3d-printed bottom
plate which housed a motorized lens assembly for changing the zoom of the camera. The most
versatile modification, however, is the 3U-Kitsat. It consists simply of longer rails and larger
solar panels, as well as mid-attachment supports. This allows for a simple interface to attach
user payloads.

2.3 Compatibility with the CubeSat standard
While close, the Kitsat frame design does not apply to the strictest definitions of a CubeSat
frame. Firstly, the 1U frame pieces are 113 mm long, as opposed to 113.5 mm defined by the
standard. Secondly, the margin of the end pieces is not tight enough to comply with the ±0.1
mm margin for the side length of CubeSats. This should be taken into account when planning

Arctic Astronautics Oy 7/20

the use of Kitsats with test equipment designed for CubeSats. Furthermore, Kitsat has not
been designed or tested to withstand the vibration loads required from CubeSats.

3. Electrical interface
Most payloads also require an electrical connection for power and the data link. The bus has an
+3V3 line as well as two battery voltage lines - one that is on when the satellite is powered,
and one that does not shut down when the satellite does, intended for backup power for
memories, real-time clocks (RTC) or similar very low current devices. For data communication,
the easiest solution is to use a USART line on the bus reserved for extension systems. The
software support for extensions also uses the USART line.

3.1 PCB format
Kitsat uses a stackable PCB format, making it easy to add new subsystems as long as the
dimensions match. The PCB format is not compatible with the standard PC/104 format. The
easiest way to achieve compatibility is to use the Kitsat KiCAD template as the starting point,
as that not only provides the PCB dimensions and the bus connector, but also the bus
definition in the schematic. Kitsat uses Harwin M20-6102045 as the bus connector, but any
general 2.54 mm pitch headers will work as well.

The Kitsat KiCAD template is available in the Kitsat extension repository.

The Kitsat subsystem boards are all 2-layer PCBs, and therefore the template is also
configured for two layers. More layers can be added through the KiCAD board setup.

Arctic Astronautics Oy 8/20

Figure 2: Kitsat board dimensions

Arctic Astronautics Oy 9/20

Figure 3: Kitsat pinout

3.1.1 Power lines
The Kitsat KiCAD template also shows the pinout for the bus power and data connections, as
can be seen in figure 3. The other pins are reserved for the internal use of Kitsat. The
MAIN_BATT+ line is connected directly to the battery through a self-resetting 1.5A fuse, while
the BATT+ is only active while either of the Kitsat power switches is on. This also allows the
extension to control the Kitsat power by connecting BATT+_bck to the BATT+ line, or even

Arctic Astronautics Oy 10/20

providing the BATT+ voltage from a completely different source. The battery in Kitsat is a
single-cell Li-Ion battery, with LVD at 2.8V and a max voltage of ~4.2V.

The Vbus line is connected to the USB power line and is used to charge the satellite. While
this means that the line can be used to charge the satellite, it also makes it potentially unsafe if
the USB is connected at the same time.

Pins 3 and 5 are +3V3 lines in Kitsat EPS:s after 1.4, while pin 3 is a +5V line in older versions.
The +3V3 is regulated from the battery with an LD39150DT33-R LDO. The drop-out voltage
is roughly 200 mV, so the +3V3 line starts to drop below 3.3V when the battery is empty.
Other subsystems remain operational until LVD, but the camera is shut off while the battery is
around 3.2V, or roughly 10% battery remaining. The maximum current output for the LDO is
1.5A, and the line is also fused through a self-resetting 1.5A fuse.

Furthermore, the battery also has internal over-current protection at 5A, which can be reset
either by removing the battery and putting it back in or by disconnecting and reconnecting the
battery-reset jumper in EPS versions 1.4 and after.

3.1.2 Data lines
The only data line reserved for extensions is the UART1 line in the satellite. The TX and RX are
named from the Kitsat OBC perspective, so TX = Main output, subnode input and RX = Main
input, subnode output.

The UART parameters are 8-N-1 115200 baud.

3.2 Cables
The satellite has some cabling inside of it. One 3-wire cable for each solar panel, one going to
the top panel for the small power switch, and a coaxial RF cable from the radio to the antenna.
The modified Kitsat should also implement these lines or replace their functionality in another
way to keep all the functions operational. Special attention should be given to the coaxial RF
cable, as operating the satellite without a cable might damage the radio. In practice, however,
this doesn’t seem to occur due to the low power of the radio.

Arctic Astronautics Oy 11/20

4. Software interface
The software interface is designed to be as flexible as possible to support different kinds of
payloads. The interface simply passes the commands from the users directly to the payload
and allows the user to customize the protocol and commands to their specific mission. The
example communication section shows one way to command a payload, but the user is
encouraged to design a system best suited for their own use case.

The Kitsat protocol has several commands implemented to enable communication to the
payload via the UART line. A table of commands is below. The commands can be issued
through the USB or via the radio interface.

Command ID Purpose

ext_tx str data 1 Send a char array with a max length of 53 bytes to
the payload

ext_rx 2 Used internally for data received from the payload
when passed through the Kitsat command interface.

ext_passthrough int state 4 Enables “uart passthrough” so that any data
received from the payload is passed to the Kitsat
command interface, i.e. to the GUI. 1 to enable, 0 to
disable. Enabled by default.

ext_start_recording str
filename

5 Starts logging any data received from the payload
to the sd card, to the file named in the command. If
the file exists already, the data is written at the end
of the existing file. The filename can be any ASCII
string, such as “data.dat” or “asdf.csv”.

ext_stop_recording 6 Disables the logging of payload messages to the
sd-card.

ext_recording_size 7 Queries the log file size in bytes

Arctic Astronautics Oy 12/20

ext_last_output 3 Get the latest recorded data.

ext_command int state 8 Enables command interface from the external
payload to the satellite. 1 to enable, 0 to disable.
Enabled by default.

4.1 Protocol
The protocol depends on the payload interface implementation. If the Kitsat GUI is used for
commanding the satellite and the payload, all commands and responses should be in ASCII
format to be visible in the GUI terminal. The data stream can still be in binary format when
saved to the SD card, but an ASCII format such as CSV can also be used.

4.2 Example communication
As an example, let’s consider a simple imaginary payload - a dosimeter. The dosimeter has
commands to check its status, query simple data items like the average and maximum and a
data stream. Here is one possible way to operate this payload.

Command Parameter Response Explanation

ext_tx start - Passes the “start”
string to the payload,
which turns the
sensor on

ext_passthrough 1 - Enable the
passthrough of uart
rx data.

ext_tx status “Active” Passes the
parameter to the
payload, which

Arctic Astronautics Oy 13/20

responds.

ext_tx latest 75.125 Gets the reading

ext_start_recording data.dat - Satellite creates the
file “data.dat” to the
sd-card and starts
saving all received
data to the file.

ext_passthrough 0 Disable passthrough
so that we can
rapidly transmit data
without cluttering
the command
interface.

ext_tx data_start - Tell payload to start
streaming data

ext_tx gain 1.0 - Command the
payload to switch a
parameter

ext_recording_size - 1337 Get the file size to
see that you are
receiving data

ext_tx data_stop - Stop sending data

ext_stop_recording - - Stop saving data to
the SD-card

ext_passthrough 1 - Enable passthrough
to see the responses

ext_tx status “Active” Request payload
status

ext_tx sensor_stop - Send command to
the payload to stop

Arctic Astronautics Oy 14/20

the sensor

ext_tx status “Disabled” Send command to
the payload to see
the status

4.3 Commanding the satellite from the payload

The payload is also able to send any command to the Kitsat, to allow more possibilities for the
custom missions. The commands are sent over the same uart interface, and as long as they
match the Kitsat command protocol, they are interpreted and executed identically to
commands received from the radio or USB interface.

The command should be sent as a buffer, which follows the format shown here:

target_id command_id Data length Data FNV checksum

1 byte 1 byte 1 byte Data length
bytes

4 bytes

Subsystem
specific ID

Command
specific ID

Length of the
data, i.e.
parameters of
the command

Parameters in
the command.
Typically ASCII
data.

Fowler–Noll–Vo
hash function -
Wikipedia

The available commands with their corresponding target and command ids can be found from
the Kitsat GUI by selecting Edit -> Open configuration files -> command_list.csv

As an example, let’s consider the command to make start the led- random pattern. From the
command list, we can find that the target_id for LEDs is 9, while the command_id for the “led

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

Arctic Astronautics Oy 15/20

show” is 2. The parameter in this case is the delay between updates in milliseconds, written in
ASCII form. Let’s use “100” in this case.

target_id command_id Data length Data FNV checksum

9 2 3 “100” The checksum

0x09 0x02 0x03 0x31, 0x30,
0x30

0x66, 0x4b,
0xd7, 0xde

Arctic Astronautics Oy 16/20

An easy way to create a valid Kitsat command is using the following C-functions:

uint32_t ufnv(char *bytes, int str_len)

{

uint32_t hval = 0x811c9dc5;

uint32_t fnv_32_prime = 0x01000193;

uint64_t uint32_max = 4294967296;

for(int i = 0; i< str_len; i++)

{

hval = hval ^ bytes[i];

hval = (hval * fnv_32_prime) % uint32_max;

}

return hval;

}

uint8_t createKitsatCommand(char *buf, uint8_t subsystem_id, uint8_t command_id, char *parameters, uint8_t

parameters_len)

{

buf[0] = subsystem_id;

buf[1] = command_id;

buf[2] = parameters_len;

memcpy(buf+3, parameters, parameters_len);

uint32_t fnv = ufnv(buf, parameters_len+3);

memcpy(buf+3+parameters_len, &fnv, 4);

return parameters_len+7;

}

For example, the led-random pattern used in the previous example would look like this. First, a
buffer is created to store the command. Next, the command is generated using the
createKitsatCommand function, where the parameters are buffer, target id and command id,
then the parameters and length of the parameters. Finally, it is written on the UART line. The
write command depends on the used environment.

char msg[64];

uint8_t len = createKitsatCommand(msg, 9, 2, "100", 3);

satellite.write(msg, len);

Arctic Astronautics Oy 17/20

4.4 Using Kitsat data in your payload
In some situations, it might be useful to use data from Kitsat sensors in your payload. Possible
use cases are for example checking the environmental data such as surrounding air pressure,
or for example reading time from the GPS. This can be done by sending a command to the
satellite like described in the previous chapter, and then reading the output. As the data will be
packetized and arrives as part of a stream of characters, reading it can be a bit tricky. The code
below presents a struct called telemetry to hold the data, and then a parser function for that
struct. The received data from UART or serial can be given to this function, and it returns an
instance of the telemetry struct. The valid_telemetry flag can be used to check if reading the
data was successful. Note that if using this implementation, the data buffer needs to be freed
after the data is not anymore needed to avoid memory leak.

Arctic Astronautics Oy 18/20

struct telemetry{

uint8_t target_id;

uint8_t command_id;

uint32_t timestamp;

uint8_t data_length;

char *data;

uint8_t valid_telemetry=0;

};

struct telemetry parse_telemetry(char *buf, size_t len)

{

struct telemetry tm;

// a valid packet will have at least 11 bytes

if(len<11) return tm;

tm.target_id = buf[0];

tm.command_id = buf[1];

tm.timestamp = ((uint32_t)buf[2] << 24) | ((uint32_t)buf[3] << 16) | ((uint32_t)buf[4] << 8) |

(uint32_t)buf[5];

tm.data_length = buf[6];

// Check if the length of buf is long enough to hold the expected number of bytes for data field

if (len < 7 + tm.data_length) return tm;

// Copy the data from buf to the data field of the telemetry struct using memcpy

tm.data = (char*) malloc(sizeof(char) * tm.data_length);

if (tm.data == NULL) {

tm.valid_telemetry = 0; // Memory allocation failed

return tm;

}

memcpy(tm.data, &buf[7], tm.data_length);

uint32_t received_checksum = ((uint32_t)buf[tm.data_length+10] << 24) |

((uint32_t)buf[tm.data_length+9] << 16) | ((uint32_t)buf[tm.data_length+8] << 8) |

(uint32_t)buf[tm.data_length+7];

uint32_t calculated_checksum = ufnv(buf, tm.data_length+7);

if(received_checksum == calculated_checksum){

tm.valid_telemetry = 1;

} else{

free(tm.data);

return tm;

}

return tm;

}

Arctic Astronautics Oy 19/20

void interpret_command()

{

struct telemetry tm = parse_telemetry(satellite_buf, satellite_buf_counter);

if(tm.valid_telemetry)

{

printf("%.*s\r\n", tm.data_length, tm.data);

free(tm.data);

return;

}

… …

Arctic Astronautics Oy 20/20

5. User interface

5.1 Kitsat GS GUI
The easiest way to send any commands to Kitsat is using the Windows ground station
software. While this enables simple operation very easily, it is also the most limiting and
requires manual operation of the payload, one command at a time,

5.2 Software solutions
Alternatively, the communication can be done through user-developed software. The protocol
is pretty easy to use for the most part, but it has some confusing parts, especially regarding
image data handling. Luckily, we have implemented a python library to take care of the
application-specific tasks.

